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Slow coevolution of a viral pathogen and its diploid

host

VIGGO ANDREASEN! axp FREDDY B. CHRISTIANSEN2*

! Department of Mathematics and Physics, Roskilde University, DK-4000 Roskilde, Denmark
% Department of Ecology and Genetics, University of Aarhus, DK-8000 Arhus C, Denmark

SUMMARY

We study a population exposed to a lethal infectious disease. Host response is carried at one locus with two
alleles while the pathogen occurs in two variants. Based on an SI-type epidemic model we derive explicit
equations for the dynamics of each genotype. By assuming small variations in both host and disease, we
obtain a separation in time scales between epidemic and evolutionary processes. This allows us to describe
explicitly the changes in host and disease gene frequencies. The resulting model has a rich behaviour
including multiple stable states and oscillations. However, in the oscillatory situation the model is
degenerate excluding the possibility of limit cycles. We show that the degeneracy can only be removed
by frequency dependent selection in the pathogen, for example by including direct interaction of virus in
a free-living stage. The qualitative conclusions extend to an SIR-type epidemic model, where recovery

with immunity from the disease is possible.

1. INTRODUCTION

Infectious parasites and their hosts are expected to
coevolve tightly owing to the major impact they exert
on each other’s reproduction and survival (Ewald
1983). The properties of parasites and hosts may evolve
in an arms race, presumably with the speed of the red
queen, or they may evolve towards benign coexistence.
The dynamics of genetic variation in hosts or parasites
are affected by the interaction, and host—parasite
interactions may be a cause for the maintenance of
genetic polymorphism (Clarke 1979).

Starting with the work of Haldane (1949) much
theoretical attention has been given to host-parasite
coevolution. The early work generally focused on the
gene-for-gene systems described in cereal crops and
their pests (see Levin (1983) for a review). Later,
models addressing more general phenomena of host-
parasite coevolution have appeared (Jayakar 1970; Yu
1972; Lewis 1981). These models use the population
genetic framework of Wright (1955) and focus on the
dynamics of gene frequencies. Little attention is paid to
the density dependent effects of the epidemic inter-
actions (Levin & Udovic 1977).

The interaction of host genetics and epidemiology
was first studied by Gillespie (1975). A continuous time
epidemiological model was used to derive expressions
for genotypic fitnesses, and these were applied in a
discrete time model of the change in host gene
frequency. Kemper (1982), Longini (1983) and May
& Anderson (1983) further developed this approach.

The population genetics of viral pathogens has been
modelled in the frame of SIR-type models for the
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disease transmission dynamics. These models view the
number of hosts infected by each viral type as an
expression of the number of virus particles of each type.
The basic unit of selection therefore becomes the viral
subpopulation of each infected host individual, and
viral reproduction becomes identical to infection of
new hosts (Levin & Pimentel 1981). The approach
ignores viral variation and the possibility of selection
within the individual host as caused by mutation or
multiple infections although the dynamics within the
individual host seem to be important (Levin &
Pimentel 1981; Knolle 1989; Sasaki & Iwasa 1991;
Nowak & May 1994). With density independent
mortality and simple transmission only the viral type
with the highest transmission potential will persist in
the population (Levin & Pimentel 1981; Anderson &
May 1982; Bremermann & Thieme 1989). The
transmission potential is given by

Ry = N/ (n+v), (1)
where N is the population size, 4 is the mortality rate,
v is the rate at which infectious hosts cease to infect
owing to causes other than non-disease related mor-
tality 4, and £ is the transmission coefficient.

Owing to the complexity of the problem, few models
of coevolution based on epidemiologically justified
assumptions have appeared (May & Anderson 1983).
We shall analyse a simple SIR-type coevolutionary
model and follow the formulation of Beck (1984). The
dynamics of each genotype of the host in each disease
class and type will be described explicitly and, still
following Beck, we shall then simplify the analysis by
assuming that the variation among types is small in
both host and pathogen and that the hosts reproduce
by random mating. This leads to the classical weak
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selection approximation of the evolution of the system
(Norton 1928; Fisher 1930; Kimura 1958; Nagylaki
1976), in that small differences in dynamic parameters
lead to small fitness differences among host genotypes
and between viral types. The assumption of small
differences in fitness implies that the system will move
to a quasi steady state characterized by epidemic
equilibrium and Hardy—-Weinberg proportions among
genotypes in the host population. The dynamics of the
gene frequencies in host and pathogen along this quasi
steady state will be described by the small fitness
differences determined from the dynamic parameters
of the model. The assumption of small variation
essentially linearizes the problem, and so we can
exclude coexistence of viral types and host poly-
morphism mediated by density dependent effects. For
larger genotypic differences in the dynamic para-
meters, density dependent effects may be important
determinants of the dynamics of the model (Hunt
1982; Selgrade & Namkoong 1985).

Beck et al. (1984) found the slow dynamics along the
quasi steady state by a rather complicated perturbation
technique for genetic variation in the host only.
Recently, we have obtained the same result by simpler
means (Andreasen & Christiansen 1993). The system
of Beck and coworkers was transformed into new
variables that focus on the population genetic de-
scription of each disease class, and we develop this
approach in the present analysis of coevolution of host
and pathogen. The ensuing model of slowly coevolving
host and pathogen turns out to be degenerate in a way
that prohibits the appearance of limit cycles in the
genetic composition of the populations. The basic
assumptions about disease transmission cause this
degeneracy by excluding frequency dependent selec-
tion in the haploid virus population. The degeneracy is
therefore a general property of SIR-type models.
Frequency dependent selection may naturally occur
for viruses with a free-living stage, like baculo viruses,
and we discuss a model where the degeneracy is broken
and complicated dynamics are allowed.

2. COEVOLUTION OF HOST AND
PATHOGEN

We consider a lethal disease with no latent period
and assume that transmission is purely horizontal with
no vertical transmission occurring. Following the
classical epidemic models we divide the population
into two classes, susceptibles S and infectious I (Dietz
1975; Hethcote 1974). The assumption that all
infectious individuals die without recovering is in-
cluded to simplify the presentation. The treatment of
the model is readily extended to a full SIR model,
where infectious individuals may recover as immune to
the disease. The qualitative results do not depend on
the simplifying assumption of an SI model, and the
conclusions of our analysis therefore will be stated as
pertaining to full SIR models.

The number (or density) of susceptibles in the
population is § and that of infectious is / with a total
population size of N = S§+1. We assume that the

Phil. Trans. R. Soc. Lond. B (1995)

population is well mixed so that the rate at which
susceptibles become infected is proportional to I; this
force of infection is therefore 4 = fI. This specifies the
well known SI model with variable population size:

S =bN—uS—pIS
I=pIS—(u+v)I

(Anderson & May 1979). The parameters of the model
may depend on the total population size, i.e. the birth
rate b = b(N), the mortality rate in the absence of
disease u = u(N), the excess mortality rate due to the
disease v =p(N) and the transmission coefficient
f = P(N) are allowed to be density dependent.

When 6(N) is a decreasing function and #(N) and
v(N) are increasing functions satisfying
#(00) > b(0) > u(0), then the population size will
remain bounded by the disease free equilibrium where
S*=N*" and bH(N') =pu(N"). In most reasonable
circumstances, in particular when the contact rate
B(N) N is decreasing, the system (2) has at most one
endemic equilibrium ($*,7*) where the disease is
present (Pugliese 1990). The endemic equilibrium
exists when the transmission potential at N,

(2)

o BININ
PN (N

exceeds unity and when the equilibrium exists it is

always stable (Pugliese 1990). In the rest of this paper

we shall assume that the parameters are chosen so that

this unique, stable and endemic equilibrium exists.

We now introduce into this model the genetic
structure of the host and virus populations by explicitly
describing the dynamics for the number of each
genotype. The disease occurs in two variants v and V,
and we divide the infectives into two classes I and I
composed of individuals infected with v and V,
respectively. We denote the numbers in the two classes
by I and I. The response of the hosts to the disease is
influenced by an autosomal locus with two alleles a and
4 and the number in the S, I and I classes of each of
the three genotypes aa, ad and A4 is denoted with
subscripts 1, 2 and 3, respectively. Mating is random
and we assume that birth is independent of disease class
and genotype. The number of aa births in the
population per unit time becomes B, = p*» N where
p=(N,+1iN,)/N denotes the frequency of a. The
population birth rates for the other genotypes
are B,=2pghN and B,=¢*N where g¢=
l—p=(N;+3N,)/N is the frequency of 4. The
birth rates may depend additively on disease class
and genotype without causing serious complications
(Andreasen & Christiansen 1993), but to keep the
model simple we assume no fecundity effects.

The genetic variation is small and its magnitude will
be measured by the parameter €. The genotypic
variation in the host is shown by subscripts and the
variations in viral types are marked with " and ". For
instance, the transmission of the disease caused by virus
v to susceptibles of genotype aa is described by the
transmission coefficient f-+¢f;. Variation in the force
of infection, however, has two sources. Variation in the
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transmission coefficient may be understood as variation
in a genotypic susceptibility factor describing the
probability per unit time that infection occurs given
the amounts of virus present. The amount of virus
particles present in the population may also vary as a
function of host genotypic composition, and we may
write the force of infection as 4 =6 where O
measures the amount of available virus,

(14+ef)l, and 6=

1 3

Mw
Mw

6= (14e7) L,

i 1

in virus population v and virus population V,
respectively. Thus, we obtain the coevolution model of
Beck (1984) in the form of equations for the three
genotypes in the susceptible class S,

dS,/dt = By~ [+ eu,] Sy~ [ B+¢fi15,0 ‘

—[f+¢p1]$,6,
dS,/dt = B,— [+ eps] S,— [ B+€5,] 5,0

—[B+€p5] 5,0,
dSy/dt = B,—[u+eps] S;— [ f+6f;1 5,6

_[ﬁ"'eﬂvz‘)] Sy @V’ )

(3)
in the infectious class I,
dL,/dt = [f+ef1) S, O —[u+eu) [,—[v+eb ] I,
dly/dt = [B+ef,] S, @ —[pu+ep,) [, —[v+ed,] Ly, } (4)

dL/dt = [f+efy] S, 0 — [+ eus) L — [v+eiy] I,

and in the infectious class I

df,/dt = [f+ef,] 8,0 —[p+eu) L —[v+ei ] L,
dl,/dt = [f+€f,] S, @ — [+ €ps] 1, —[vev,] 1,, ()
dly/dt = [f+ef5] S, 0 —[p+eus] I, —[v+ev;] L.

The transformation of Andreasen & Christiansen
(1993) is used to display the structure of system
(3)=(5). For each disease class Q we change the
description from genotype numbers (@, @, @;) into
variables (@, p,, ;) that provide the total number of
individuals in the class Q, the frequency of the allele
a, py and the deviation from Hardy-Weinberg pro-
portions are measured by Wright’s fixation index,

— 4Q1 Qs_Qg
¢ (20,4 Q;) 20+ Q)

With this change of variables we have

Q, =p?2+1bQQQFQ’ Q.= QPQqQ(l _‘FQ)
and @, = 92 +pq QQ

The total gene frequency is p = (S/)S+I/JI+Ip, /N
The total number of infected individuals is /= /+1
and we use the frequency 7 = I/I of disease type v to
describe the composition of the viral population. The
structure of the terms of order € is not specified, but
they enter 1n1t1ally as functions ¢, in the equation
specifying @. The nine equations of system (3)—(5) then
collect in four groups that describe the epidemic,

dS/dt = bN—uS— ST+ ez/fs,1
dIfdt = ASI—(v+u) I+ ey, | (6)
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V. Andreasen and F. B. Christiansen 343
the composition of the pathogen population,
dm/dt = eyr,, (7)
the gene frequencies in the three host classes,

dps _,ml . (1—m) 1

(/’VI —ps)+ elﬁpS’

df,/dt = BS(ps—Fr) + e, ()
dp,/dt = BS(ps—Fy) + e,

and the deviation from Hardy—Weinberg proportions
in the three classes of the host population,

df _ N ((p —ts)*
dt

(1—Fy—-22

F)+e ,
bsqs bs s g Vs

dﬁ} (ps ﬁ ) ~y Dsds )
— =4S — —F F E) | +evp,
dt g ( b4y S )= zbl 91( s) GIﬁ

_q_}il — ﬂS<(pS_ Vl)z (1

dt brdr

—fy —Lsls i - F>)+ez/fn
Ibl I

9)

For no genetic variation in the parameters of the
model, i.e. for € =0, the host population settles at
Hardy-Weinberg equilibrium and no change in the
composition of the pathogen population occurs. The
system (6)—(9) therefore contains a two-dimensional
attracting manifold of fixed points,

@(p,m) ={(S, 1, "aps’ﬁbl;lF& F}’Fz)

= (S*,I* mp,p,$,0,0,0)[0<7<1,0<p< 1},

where $* and I* are the equilibrium values of S and /
determined from (6) (see appendix A). For small
variation in the parameters of the model, ¢ € 1, the
model has a two-dimensional quasi steady state (Segel
1988), and we can use the theorem of Thikhonov
(Hoppensteadt 1966) to show that solutions to the
model will move ‘quickly’ to be near the manifold @.
Once the solution is at a distance of order ¢ to w, all
terms in equations (6)—(9) are of order ¢, and the terms
of order O(e) that describe the effect of genetic
variation become important for the dynamics. The
convergence to the manifold @ is the ‘fast’ dynamics of
the system, and close to @ the rate of change is small,
and we have reached the ‘slow’ dynamics of the
system. The ‘slow’ dynamics are approximated by the
dynamics on @w. The biological interpretation is that
the epidemic and demographic processes will settle at
an equilibrium virtually independent of the genetic
composition of the population, that the frequency of a
will be virtually identical in all disease classes and that
the genotypes will occur in frequencies indistinguish-
able from the Hardy—Weinberg proportions in all
disease classes after a short initial transience. The
remaining variables 7 and p describe the frequency of
v and a, respectively, and the slow dynamics on @
therefore correspond to the slow coevolution of disease
and host.

The change in the genetic composition of disease and
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host along the manifold @ is well approximated by the
solutions to

) (S{6,

— B b+ BSG—F, oy — 15, — | p),

(10)

T =em(l—

(b—pS)1/S
BS+461/S
bI/S
BS+461/S

j= epq(—<m|p>+ (nfy S+ (1—m)

(o ‘+<1—7r>v;|p>), ()

on time intervals of the form (0; 7'/¢) where T may be
replaced by oo if (m,p) settles at a uniform asympto-
tically stable equilibrium. (An equilibrium y, is
uniform asymptotically stable if the deviations y(¢) —y,
can be uniformly bounded by a decaying exponential
function over all initial conditions in the ball |y —y,|.)
The variables S, 7 and N in these equations are S*, I*
and N*, i.e. the variables evaluated at the epidemic
equilibrium, and we have used the notation
Ckilpy = kyp+ky(g—p) —ky g for the average excess of
allele a over allele 4 in the genotypic values of
parameter % and the notation {k|p} =4k p*+
ky2pq+ky ¢* for the population average of the geno-
typic values of parameter £ (Andreasen & Christiansen
1993). Except for minor variations in the param-
etrization, this result was obtained by Beck (1984).
However, the method in appendix A is considerably
easier than the method used by Beck.

3. THE DYNAMICS OF WEAK SELECTION

Equation (10) resembles the classical equation for
the weak selection approximation in diploid population
genetics. To emphasize this we introduce the genotypic
fitness coefficients in a population infected only by the
v virus,

(b—pS)1/S 4

bIs
BS+al)s P

BS+b1/S"

§=—u+ i=1,2,3,
and we assume similar definitions, §,7=1,2,3, for
the V virus. These fitnesses depend on the epidemiology
in a complicated way, but the expression is readily
extended to cover a full SIR model (Andreasen &
Christiansen 1993). The genotypic fitnesses in the
classical sense are e[ns,+ (1 —m) $],7 = 1,2,3, but we
may drop the factor € and refer to the coefficients
s+ (1—m) ;0 =1,2,3, as the genotypic fitness. The
classical form of equation (10) is then

b= epglms+ (1—m) 51 p). (12)

The corresponding homozygote fitness excesses relative
to the heterozygote are 7 =3§—5, f3==5—45,
7, =8—5 and 7, =;—,, and the average excess
growth rates of allele a are
f(p) = (Silp> = Fip—Tag
and  7(p) = S|p> =7p—T5q (13)

in a host population exposed solely to virus type v and
virus type V, respectively. The dynamics of the gene
frequency in the host therefore is determined by

b= epg[mi(p) + (1—m)#(g)]. (14)

Phil. Trans. R. Soc. Lond. B (1995)
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Equation (11) has the structure of the equation for
the selection in haploid population genetics. The excess
in fitness of virus v over virus V in a population
composed entirely of individuals of genotype 7 is

0= (ﬁi_ﬁi)s+($i_%i) pS— (=), i=1,2,3,

which is similar to the relative fitness excess above.
These parameters bring equation (11) into the form

7 =em(l—m) (c,p°+ ¢y 2pg+ 5 q%). (15)

Thus, at any time the change in frequency 7 of the viral
haploid v is determined by the average excess in fitness
of v in the mixed host population, ¢; p®+ ¢, 20 + ¢4 ¢°.

The transmission potential R, given by equation (1)
is a measure of the competitive ability of a viral type
and, by analogy with the competitive exclusion
principle, we can show — under assumptions about the
linearity of mortality and disease transmission — that
the type with the highest value of R, will outcompete
all other types. For a population composed of only one
genotype, the fitness parameters ¢, indicate the same

since to first order we have
V) B
+0(e
)

= ey (=) S+ (=) 5= (5

where we have used the equilibrium condition
BS = u+v. Therefore, from the definition of ¢, we
obtain

N3

Ry—R, =
e(w‘—ﬁS N+(#—F)pN (3=
wEv (m

M1+ 0(e),

R—FR, e,
— T 0 2
R, ﬂ+v+ (€,

and we see that ¢, measures the relative difference in
transmission potential for the two virus types per
‘pathogen generation time’ (p+ )™}

The detailed model and the weak selection model
are compared on the basis of numerical solutions. The
models are integrated by using a fourth order Runge—
Kutta algorithm with adaptive step size. We assume
that the slow variables (7, p) do not change significantly
during the initial transience in the detailed model; so
the same initial values for 7 and p are used in both
models as in conventional quasi steady state approxi-
mations.

(a) Phase plane analysis

The weak selection model given by equations (14)
and (15) is a special case of the general coevolution
models studied by, for example, Levin & Udovic
(1977). The present model is density independent and
it has a specified structure in the type of frequency
dependence; so more can be said about it than about
general models. For instance, at a polymorphic
coevolutionary equilibrium (7%, p*) the heterozygote
cannot have intermediate fitness (Levin & Udovic
1977). In our case this follows immediately from the
form of equation (12) where the genotypic fitnesses at
equilibrium enter exactly as in the classical slow
selection equation.
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Table 1. The number of internal 7 = O isoclines for various
values of c;, the excess in fitness of virus v over virus V in a
population composed entirely of individuals of genotype i

¢, >0 C, <0
L =0 {62>—\/616310} )
b Ca < =632
€3> 1/¢164:0
a<0 1 {cz<\/clc3:2}

The 71 = O isoclines of the system may number 0, 1 or
2 in addition to the two trivial null isoclines 7 = 0 and
7 = 1 which always exist in a population genetic model
without mutation. The non-trivial isoclines are from
equation (15) of the form p = p*, where p* is a root of
the polynomial on the right side of equation (15) given
by

* — ‘s

S T araEv@E-a 1o
and subject to the constraint 0 < p* < 1. Similarly, the
dynamics of p have two absorbing states with only one
allele present, namely p = 0 and p = 1. The remaining
dynamics of p are determined by the two linear
functions 7(p) and 7(p) in (13) that give the average
excess fitnesses of @ on the two boundaries 77 = 0, 1. The
sign of p is determined by a convex combination of 7( )
and 7(p) in the interior. Thus for fixed p at most one
point given by

—7(p)
() —7(p)
has p = 0, and this defines the p = 0 isocline. At most

one point has p = 0 for fixed 77, and so the p = 0 isocline
is also defined by

m*(p) = (17)

Fymm+15(1—)
(Fi+i) m+ (F+7) (1—m)

p¥(m) = (18)
Therefore, the system can have 0, 1 and 2 internal
equilibria, at most one at each of the 77 = 0 isoclines,
and an internal equilibrium with p = p* given by
equation (16) has 7 = 7* where 7* = 7%*(p*) from
equation (17). Because 0 < 7* <1 the equilibrium
exists if and only if 7(p*) 7(p*) < 0 from (17).

An internal equilibrium with gene frequency p* is
present when the average excess in fitness of a is of
opposite sign in individuals infected by virus v or by
virus V in a host population with gene frequency p*.
That is, the two virus types should induce the highest
average fitness for different alleles. Equation (16)
determines one valid frequency p* when ¢;¢; <0;
otherwise zero or two internal 77 = 0 isoclines exist as
shown in table 1.

The stability of an internal equilibrium (7%, p*) can
be investigated by a standard linear analysis giving the
following linearization

(5)=2()

Phil. Trans. R. Soc. Lond. B (1995)
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1.0

0 2 4 6
t/e

Figure 1. The solution of the approximate model (solid
curve) and of the full model with ¢ = 0.2 (dashed curve) and
0.5 (dotted curve) in a situation where A4 fixes in the host
population and V fixes in the virus population. The
parameter values are b = 0.2, #=0.1 and v = = 1. The
genetically determined parameter perturbations are
M=—p,=1,p =—p =—1land v, = -9, = —2 while all
other perturbations are zero. (The magnitudes of the
perturbations are unreasonably large to display clearly the
effect of the approximation.)

where

D=(p 0
A=p*) [F(p*) —7(p*)]
i?ﬂ*(l—ﬂ*)\/(cg_clce) )
P¥(L=p*) [(F+ 1) m* + (5 +75) (1 —7%)])

(b) Analysis of equilibria

When the polynomial ¢, p* + ¢, 2pq + ¢, ¢* has no roots
between 0 and 1 one strain of virus has the highest
growth rate for all host populations. Therefore, 7 is
monotonically increasing or decreasing in the open
unit square and one of the lines 7 = 0 and 7 = 1 will be
attracting. On this line the dynamics are determined
by selection in the host population exposed to just one
viral type, the situation discussed by Andreasen &
Christiansen (1993). The equilibrium attracts all
solutions starting in the interior of the unit square at an
exponential rate and the full system will remain O(e),
close to the approximate solution for all time. Figure 1
shows an example where the only stable equilibrium is
fixation on genotype A4 and virus type V. The
approximation seems to work quite well for pertur-
bations as large as € = 509, and even then special
values of the genetic parameters have to be used to
obtain discernible differences between the curves in the
figure. This effort has been repeated for the illustrations
involving integral curves, figure 5 in particular.

The case ¢, ¢; < 0, with one internal 77 = 0 isocline at
p = p*, includes most of the interesting coevolutionary
behaviour of the system, and we discuss this case in
some detail. When ¢, ¢; < 0 one virus type will have the
highest growth rate in a monomorphic population
consisting of aa and the other viral strain will be most
fit in a population consisting entirely of 44. We may
assume that v has an advantage on aa, and that V
grows the fastest on A4, i.e. ¢, >0 and ¢y, < 0. This
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Table 2. Existence and stability conditions for the internal
equiltbrium in model (14), (15) when ¢; > 0 and ¢5 < 0, i.e.
when one internal 7 = 0 isocline exists (table 1)

7(p*) >0 P(p*) <0
(p*) >0 no equilibrium focus
7(p*) <0 saddle no equilibrium

p /p:o

0 T 1

Figure 2. Phase portrait for model (14), (15) with 7(p*) > 0
and 7(p*) < 0, where the internal equilibrium is a saddle.
The solid curve shows a situation where monomorphism
prevails in a host population that is infected only with one
virus strain. The broken curve shows a situation where
polymorphism in the host is possible in a population only
infected with virus v.

means that 7 > 0 for p > p* and 77 < 0 for p < p* and
that the appropriate solution in (16) uses the minus
sign in the denominator.

The existence of the internal equilibrium and its
local stability depend on 7(p*) and #(p*) as indicated
in table 2. If 7(p*)#(p*) > 0 then p is monotone and
the system will possess one stable equilibrium with
monomorphism in both host and pathogen. We shall
not discuss this situation further but focus on the cases
where 7(p*) and #(p*) have opposite sign. We
distinguish between two situations. First, the situation
where 7(p*) > 0 and 7(p*) < 0. Then at equilibrium
allele @ has the higher average fitness on v and 4 the
higher on V, and the combinations a with v and 4 with
V provide the higher fitness for both host and
pathogen. The internal equilibrium is a saddle
according to table 2. Second, we consider the situation
where 7(p*) < 0 and 7(p*) > 0. Then at equilibrium
allele a has the higher average fitness on V and 4 the
higher on v, and the higher fitness for host and
pathogen is obtained in different combinations. The
internal equilibrium produced is a focus.

(1) Polymorphic equilibria of the saddle type

The internal equilibrium is unstable in this situation;
so monomorphism in the pathogen always results. We
first consider the case where a has the higher average
fitness for high frequencies of v and that V and 4 also
induce high fitnesses for each other, i.e. 7(p) > 0 and
7(p) <Oforallp,0 < p < 1, and not only for p = p*. In
the phase portrait (figure 2) the p = 0 isocline passes
from the line p = 0 to the line p = 1 (the solid curve in
figure 2). The equilibria at (0,0) and (1,1) are
asymptotically stable while the equilibria at (1,0) and
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Figure 3. Behaviour of the coevolution model in a situation
where the fixed point for coexistence is a saddle. Trajectories
for the approximate model (solid lines) and the full model
(broken lines) may separate if initial conditions are near the
stable manifold of the fixed point for the approximate model
(thin lines). The parameter values are the same as in figure
1. The genetically determined variation in parameters for aa
is e, = 0.00125, v, = —eb, = 0.25 and ¢f, = —ef, = 0.22.
For A4 the deviations of v and f are ey = —ed; = —0.13 and
efl, = —¢€fl, = —0.11 while p, =p,. Deviations for the
heterozygote are set to zero. The values correspond to
¢ =0.01, tr D =—0.0625 and detD = —0.5.

(0,1) are unstable, and the stable manifolds % of the
internal equilibrium separate the basins of attraction
for the two stable equilibria with (1,0) and (0,1)e .
The system will go to monomorphism in both pathogen
and host, ¢ with v or 4 with V, with the outcome
depending on initial conditions.

Disease induced polymorphism in the host may
occur if 7, =7#(1) <0, but #(p*) >0, because this
implies that 7; < 0. Therefore, the host shows over-
dominant selection with only virus v, and the equi-
librium with frequency p' = 7,/ (7, + ;) is stable as long
as virus V does not occur in the population. The p =0
isocline bends to the right and crosses the line 7 = 1 at
p=1p" (broken curve in figure 2). When 7 =0 the
p = 0 isocline passes through the equilibrium at (1, 1)
which bifurcates and exchanges stability with the
equilibrium (1, p") as 7, becomes negative. For p' > p*
the equilibrium (1,p") remains stable, and at p' = p*
the equilibrium fuses with the internal equilibrium and
loses its stability. For p* < p* the internal equilibrium
does not exist, (1,p") is unstable to the introduction of
V and (0,0) is the only stable equilibrium. Similarly
the equilibrium at (0,0) may exchange stability with
an equilibrium corresponding to host polymorphism in
the stage where only V is present. The two equilibria
with host polymorphism and pathogen monomorphism
may exist and be stable simultaneously.

The comparison between solutions to the full model
and the approximate solutions is somewhat delicate
when the internal equilibrium is a saddle (figure 3).
For solutions starting far from &, one of the fixation
states is uniform asymptotically stable, and the two
solutions remain close in both a quantitative and a
qualitative sense. For solutions starting close to the
stable manifold the approximate and the full solutions
may differ in two ways. They may simply fall in
different basins of attraction because of a small
difference in the position of the stable manifolds in the
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0 - 1 7
Figure 4. Phase portrait for model (14), (15) with 7(p*) <0
and 7(p*) > 0, where the internal equilibrium is a focus. The
solid curve shows a situation where monomorphism prevails
in a host population that is infected only with one virus
strain. In this situation the edges form a heteroclinic orbit.
The broken curve shows a situation where polymorphism in
the host is possible in a population only infected with virus v.

1.0 r

1 ]
0 20 40
t/e

Figure 5. Solutions to the approximate model (dashed curve
e = 0.1, dotted curve ¢=0.2) and the full model (solid
curve) in the situation where a stable double poly-
morphic coevolutionary equilibrium exists. The parameter
values are the same as in figure 1. The genetically
determined parameter perturbations are g, =, = 0.5,
f=—p=—P,=p;=84and ¥, =—v, =—7, =7, =88
with all other perturbation equal 0. The values correspond to
trD =—0.25 and detD = 0.25. (The magnitudes of the
perturbations are unreasonably large to display clearly the
effect of the approximation.)

full model and in the approximate model. Even when
the curves remain in the same basin of attraction, one
trajectory may be slower than the other. The trajec-
tories are stalled in the neighbourhood of the saddle
point, so that curves that come close to the saddle slow
down compared with curves that stay farther away;
therefore near &% we obtain only qualitative cor-
respondence between the solutions. With these reser-
vations we conclude that the approximate model is a
good predictor of the coevolutionary behaviour in the
full model.

(ii) Polymorphic equilibria of the focus type

Again we first assume that the average excess
fitnesses of allele ¢« have the same sign for all gene
frequencies, i.e. we assume that #(p) <0 and 7(p) >0
for all p,0 < p < 1. Thus, a has the higher average
fitness for high frequencies of V and 4 is favoured for
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high frequencies of v. The phase portrait of this
situation is shown in figure 4, and the § = 0 isocline
passes from the line p = 0 to the line p = 1 (the solid
curve in figure 4). All four corners are saddles, and the
edges connect these four saddles in a heteroclinic orbit,
v, strung between the saddle points in I = {(0,0),
(0,1),(1,1), (1,0)}. The solutions will rotate clockwise
around the internal equilibrium.

The stability of the internal equilibrium is de-
termined by the trace condition tr D < 0 which is

(Fi+7y) m* 4+ (7 +75) (1 —a*) < 0. (19)

Thus, the polymorphic equilibrium is stable when the
denominator in the equilibrium gene frequency in the
host, equation (18), is negative. This happens when
fitnesses 7*§, 4+ (1 —7%) §;,2 = 1,2, 3, are overdominant
at equilibrium, i.e. when the fitness of the heterozygote
at equilibrium is larger than the fitness of either
homozygote (Levin & Udovic 1977). Equation (18)
simplifies the stability conditions (19) to

Ko iy < Fy 7, (20)

When condition (20) is satisfied damped oscillations
occur, and a Hopf-type bifurcation is expected to take
place at trD = 0 when the polymorphic equilibrium
becomes unstable. However, the system given by
equations (14) and (15) is degenerate, in that the third
order terms that determine the nature of the Hopf
bifurcation vanish.

The system undergoes a global bifurcation at the
heteroclinic orbit vy simultaneously with the Hopf
bifurcation. Solutions near y will be attracted to y
when B < 1, where

Au(9)
B=11 — 21
gerl _As(q) ( )
and A,(¢) and A,(¢q) are the stable and the unstable
eigenvalues of the linearization around the saddle
point gel (Guckenheimer & Holmes 1983).
Evaluating these eigenvalues we obtain

v A y o4
Yy CafyicC Ty f
303710 3

B=—=>—===-=
G371 0173 ThTy

Thus, B < 1 ifand only if condition (20) is not satisfied,
and so the boundary orbit vy is attracting exactly when
the internal equilibrium (7%*,p*) is repelling. The
internal equilibrium and the heteroclinic orbit are
therefore neutrally stable at trD = 0, and in passing
through tr D = 0 the system goes directly from solutions
spiralling slowly into (77*,p*) to solutions spiralling
slowly away from the equilibrium and onto the
heteroclinic orbit.

When trD < —0(¢), the polymorphic equilibrium
is uniform asymptotically stable, damped oscillations
occur and the solutions for the full and approximate
models stay close for all time (figure 5). The system
does not have a uniform asymptotically stable solution,
however, for undamped oscillations when tr D > O(e).
The full and approximate solutions will diverge over
time, but the divergence is essentially due to differences
in the period of the undamped oscillation. The
solutions oscillate out onto the heteroclinic orbit, and


http://rstb.royalsocietypublishing.org/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
(@)

Downloaded from rstb.royalsocietypublishing.org

348 V. Andreasen and F. B. Christiansen Slow coevolution of virus and host

1
TN
7o) J
p \ \\._//
0 N 1
1 S A—
— ~
/ N\
/ \
[ |
[ . A
p A
l /
\ /
N P
0 A 1

Figure 6. The dynamics of the full model are sensitive to
small changes in ¢ when tr D = O(¢). The fixed point at (},3)
undergoes a subcritical Hopf bifurcation at €= 0.092
spawning an unstable limit cycle that disappears in a global
bifurcation at the heteroclinic orbit for e~ 0.5. Solid
line: integral curve; broken line: unstable limit cycle.
Top diagram, ¢ = 0.095; bottom diagram; ¢ = 0.14. The
parameter values are the same as in figure 1. The genetically
determined variation in parameters for aa is u, = 0.0075,
¥y =—9, =—13and g, = —f; = 1.2. For A4 the deviations
of v and B are ¥, =—7¥, =0.5 and S, =—p,=0.5 while
My = p,. Deviations for the heterozygote are set to zero. The
values correspond to tr D = 0.00375 and det D = 0.0025.

we maintain a qualitative correspondence between the
approximate and the full solutions.

When tr D = O(e) neither the quantitative nor the
qualitative behaviour of the full system is determined
by the approximate model. The approximate model
changes from damped to undamped oscillations
through a critical Hopf bifurcation, but the full system
undergoes a usual (sub- or supercritical) Hopf bi-
furcation giving rise to a limit cycle which disappears
through a global bifurcation at the heteroclinic orbit
(figure 6).

As before the p = 0 isocline may bend, as indicated
by the broken curve in figure 4. This gives rise to an
equilibrium with polymorphism in the host for one or
both of the monomorphic virus populations, (0, p*) and
(1,pY. If 1 > p" > p* then the equilibrium (1,1) is
locally stable, and, when the internal equilibrium
exists (0 < p* < p*), it is unstable. Thus, the system
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cannot have two stable equilibria when the unique
internal equilibrium is a focus.

(iii) Two polymorphic equilibria

When two 77 = 0 isoclines exist the phase portrait
essentially consists of combinations of the situations
described above. When two internal equilibria exist,
one is a saddle and one is a focus. A heteroclinic orbit
cannot exist, and a stable boundary equilibrium always
exists. The essentially new phenomenon that may
occur is simultaneous stability of the focus and a
boundary equilibrium with one virus type and either
monomorphism or polymorphism in the host.

(¢) Degeneracy

The local stability of the double polymorphic
equilibrium (7%, p*) needs to be studied in more detail
to understand the biological origin of the degeneracy in
the model. The model given by equations (14) and
(15) has the form

i =en(l—m) f(p;9),

p=ep(1=p)g(m p; ),

where & is a bifurcation parameter. The function
S(p;?) is independent of 77, i.e. f, = 0, and the function
g(m,p;9) is linear in p and 7, i.e. g, =0 and g, , = 0.
For simplicity we focus on a single bifurcation

parameter 9. At the bifurcation value ¥ = ¥, we find
that a pair of complex eigenvalues A(¢) of the Jacobian

D(9) =

0 m*(L=7%) [, (#*590)
A =p*) g(m*,p*59) (1 —7%) g, (m*, p*; D)
passes through the imaginary axis. In other words we
have that

A(Yy) = tiw and Rei/1 # 0. (22)
dd [y,

Thus, the second diagonal term of D vanishes at the

bifurcation point, and we have that g, = 0.

It is well known that under conditions (22) a Hopf
bifurcation occurs at (7*,p*;3,), and this may be of
three types:
supercritical Hopf bifurcation, a stable periodic orbit

occurs when the eigenvalues have positive real part

and no periodic orbit exists when the eigenvalues
have negative real part;

subcritical Hopf bifurcation, an unstable periodic orbit
occurs when the eigenvalues have negative real part
and no periodic orbit exists when the eigenvalues
have positive real part;

critical Hopf bifurcation, the effect of the third order
terms vanishes and the dynamics are determined by
higher order terms.

The details of the bifurcation are determined by the

third order terms which can be found by computing

the normal form of the equation (Guckenheimer &

Holmes 1983). However, Liu e/ al. (1986) provide a

formula that allows us to compute directly a critical

parameter C, the sign of which in combination with the

derivative ReA’(¥;) determines the type of the
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bifurcation. The assumptions about f and g,
fn= gy =gy, =0 in particular, make C vanish and
the bifurcation is critical.

This degeneracy implies that the model given by
equations (14) and (15) is structurally unstable, i.e.
even small changes in the vector field may give
rise to significant changes in the phase portrait
(Guckenheimer & Holmes 1983). The model is based
on a series of simplifying assumptions, and we shall
discuss how the model may be modified to remove the
degeneracy.

The model is obtained as a first order approximation
to a larger system of equations; so higher order terms
may remove the degeneracy. Numerical solutions of
the full model (3)—(5) show that the Hopf bifurcation
and the global bifurcation at 7y are indeed separated in
parameter space. A sub- or supercritical Hopf bi-
furcation occurs at the polymorphic equilibrium and
gives rise to a limit cycle that undergoes a global
bifurcation at the heteroclinic orbit, but both events
happen for parameter values with trD = O(¢). The
transition between the two dynamic states of the model
therefore occurs within a tiny area of parameter space.
Thus, the model is structurally unstable in the sense
that small changes in the vector field may alter the
dynamics significantly if the changes outweigh the
higher order terms in e.

This returns the focus to the approximate model
given by equations (14) and (15). From our analysis
the degeneracy depends on three properties of the
model:

(1) f7 =0, no frequency dependence in the fitness of

the haploid pathogen;

(2) g,, =0, no frequency dependence in the geno-
typic fitnesses of the diploid host (the allelic
fitnesses are linear in host gene frequency);

(3) g/, =0, the genotypic fitness of the diploid host
is linear in the type frequencies of the virus
population.

The selection on the variation in the host and pathogen
populations is frequency dependent in the full model
(3)—(5). The frequency dependence, however, is weak
in the sense that, for example, the frequency dependent
effect in the host is of order ¢* which is an order of
magnitude lower than the effect described in the
fitnesses es, of the approximate model.

The first property appears to be quite fundamental
to SIR-type interactions which implies that the model
allows for no direct frequency dependent selection
among viral types. The expression for f comes from the
equation for the change in 7 which from equation (28)
of appendix A is of the form

%: en(1—m) (%—’—%)

where zﬁ, and 1}, denotes the order ¢ terms of df/d¢ and
dl/dt evaluated at the slow manifold @. The term v, /1
is independent of 77 since @ in the infection rate and I
in the removal rate are proportional to [ = 7. Thus,
latent period, immunity and density dependence do
not affect the degeneracy provided that a quasi-
equilibrium exists where the distribution of infections
follows the frequencies of v and V in the population.
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If disease transmission is determined by hetero-
geneous mixing among hosts, like the mixing charac-
teristic of sexually transmitted diseases in man, the
infection rate is more complicated. However, frequency
dependent selection among viral types still does not
occur if exchange among groups is sufficiently strong
and if reproduction is by random mating in the total
population. To illustrate this assume that the host
population is divided into two subpopulations X and Y
with contact rates ¢y and c¢y. If the mixing is
proportionate (Barbour 1978) the rate of new v
infections for genotype 7 in subpopulation X becomes

3 p ex Ix+cy Iy

Lxi = (B+ep) CXSAiCX Netog Ny

(Hethcote & Yorke 1981). Births are divided among
the two subpopulations in fixed proportions and
otherwise the model is the SI model of section 2. The
coordinate transformation in section 2 for each
subpopulation yields the dynamics of the type fre-
quencies 77y and 77y in subpopulation X and Y:

Cx C I
Ty = fXy——2F X, —7) + €Y o,
X ﬂ XCX NX+CY NY IX< Y X) ¢ﬂx
¢ 1
7y = BSy XX X(ﬂx_ﬂv)+€¢nv'

CxNx+CYNY?;

If the model has a stable endemic equilibrium then
(7, my) settle to the slow manifold (77, 7). At this quasi-
equilibrium the infection rate #y, again is proportional
to 7 and frequency dependent selection among viral
types is excluded. More complicated mixing patterns
such as preferred mixing ( Jacquez et al. 1988; Blythe &
Castillo-Chavez 1989) do not affect this conclusion.

Subcritical and supercritical Hopf bifurcations have
different biological interpretations when they occur in
the full system with finite genotypic effects. The
supercritical Hopf bifurcation maintains poly-
morphism in both host and pathogen when the fitness
of the heterozygote at equilibrium is smaller than the
fitness of either homozygote. Thus, the existence of a
stable limit cycle extends the possibility for poly-
morphism. The subcritical Hopf bifurcation (e.g. figure
6) renders the stable polymorphic equilibrium un-
attainable in the sense of Asmussen & Feldman (1977),
and so the existence of an unstable limit cycle
diminishes the possibility for the population to attain a
state where polymorphism exists in both host and
pathogen.

4. FREQUENCY DEPENDENT SELECTION IN
THE VIRUS

Direct interaction among viral types may cause
frequency dependent selection in the viral population.
To illustrate this we analyse a modified version of a
model of phage—bacterium coevolution (Levin ef al.
1977; Levin & Lenski 1983; Stuart & Levin 1984;
Levin 1988). In the phage-bacterium system a free-
living stage of the phages attacks uninfected as well as
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Figure 7. Bifurcation diagram for the symmetric model (26),
(27) describing a baculo virus. The parameter ¢ describes the
component of viral selection induced by the host and is fixed
at ¢ = 4. The parameter ¢ on the abscissa describes the
frequency dependent fitness component of viral selection.
The parameter o on the ordinate gives the strength of
selection induced by a viral type against the host allele
preferred by that viral type relative to the strength of
selection against the other allele. The curve tr D = 0 shows
where the internal equilibrium changes stability while B = 1
indicates where the heteroclinic orbit y undergoes a global
bifurcation. In the absence of frequency dependent selection
(d = 0) the bifurcation is degenerate.

infected bacteria, and in Levin’s model genetic
variation in attack rates allows for structural stability
in the coevolutionary model.

A similar situation occurs for baculo viruses infecting
insect larvae. Baculo viruses replicate rapidly and fill
the entire body of the larva with virus capsules with a
protective proteinaceous cover. This shield allows the
virus to stay active in the environment for as long as ten
years. Infections primarily occur when larvae feed on
leaves contaminated with virus capsules (Fraenkel-
Conrat et al. 1988).

The pool of free virus capsules W plays a central role
in the transmission dynamics of baculo virus, and
Anderson & May (1981) included it in the SI model:

S =bN—uS—pSW,
I=BSW—(p+v)1, (23)
W= A—pNW—

where N =841 is the total number of larvae. The
amount of free virus produced per infected host that
survives the infected stage is A/v. Larvae meet virus
capsules at the rate S, and the amount of virus in the
environment is measured in units of the amount
ingested by a susceptible larva to become infected. The
term FNW reflects the fact that both healthy and
infected larvae eat and remove virus particles from the
pool of the free virus. This phenomenon induces a
direct interaction between infection types because virus
eaten by an already infected larva is less likely to
reproduce.

The disease persists in the population only if the
number of infective doses produced by an infected
larva, A/(v+u), times the probability that the virus is
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consumed by larvae, AN*/(SN*+p), exceeds unity in
a population where all larvae are susceptible, i.e.
A PN
0= ¥ >
L+v N +o

With this threshold condition satisfied an endemic
equilibrium exists, and it may be stable or spawn a
stable limit cycle through a Hopf bifurcation. To
simplify the discussion we assume that the model has a
stable endemic equilibrium. The non-stationary case
can be handled in a similar way by using suitable time
averages (Andreasen & Christiansen 1993).

The full coevolutionary model with two viral types
and two alleles to determine host response is given in
appendix B. After transformations, like those used in
section 2, the slow coevolution of host and pathogen is
described by

7'7=677(1—77)< ASI—I/))WS—/’) ﬂf'/’}——“{"i Vil p}
BS

AI/W+,[)’SW/I —Adp—

(6—¢)
BSW

T XW BT

[ﬂ{lévi_lévilp}

—w){/i’w—ﬂ“wlp}]), (24)

/5=ep(1—/>)(—<mlp>

(b—BSW/I) WS
BSW/I+bI/S

[7< B S1pY+ (1—m) < B, S 1))

bI/S

NS

[n<ﬁi|p>+<1—n><ﬁi|p>1). (25)

The transmission rate f varies with genotype and viral
type in both susceptible and infected larvae. The
deviation from f for susceptible larvae of genotype i as
before is described by S, and g, for infections of v and
V. The deviation from ﬂ for larvae of genotype ‘
infected with virus type v is described by /)’ and ,b’
when the larvae meet virus capsules of type v and type
v, respectively The rate deviation for larvae of
genotype ¢ infected with virus type V is described by
ﬂVz and ﬁVz

Compared with model (14), (15) the fitness of the
virus now includes a frequency dependent term
proportional to 77{,6’ —Bul b+ (L= { Boi— o | p)-
Thus, frequency dependent selection occurs in the viral
population if By, — By, # f,;— s, 1.e. if the two viral
types induce different search behaviour in the infected
hosts and if they differ in the amount or distribution of
virus capsules produced. For example, if the feeding
rate of larvae infected with strain v is reduced and in
addition the spatial distribution of virus is hetero-
geneous in that larvae infected with v are more likely
to encounter v-virus particles than V particles, then
genuine frequency dependence occurs and the de-
generacy is broken.
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The structural similarity between model (24), (25)
and model (14), (15) is exposed by the introduction of
aggregate parameters:

7 =em(l—m)[e,p*+ ¢, 209+ ¢3¢ — (p—§)

+7(dyp* +dy 209+ d5 ¢°)],
p=epqlm(fip—ryq)+ (1 —m) (Fip—759)]
We need not analyse the system in general to argue
that the degeneracy is removed. Rather, we consider a
highly symmetric situation, where the variation in

encounter rates for infected individuals is independent
of genotype, d, = d, and where the fitness of hosts and

virus are symmetric in that ¢ =—¢; =¢, ¢, =0,
fr=1r=—a, f,=7 =1 and p—% =0, where ¢ =0
and a = 0:

m=en(l—m)(c(p—q)+dn), (26

p=epgl—mlap+q)+(1—m) (p+aq)]. (27
For d=0 this corresponds to ¢ ¢ <0,7(p) =
—(op+4q) <0 and #(p) =p+ag=0, which is the
focus case depicted in figure 4. We restrict attention to
the case where —3¢c < d < }¢. This ensures that figure
4 still represents the phase portrait with the existence of
exactly one internal equilibrium of focus type and a
heteroclinic orbit with clockwise flow (the 7 =0
isocline is still a straight line, but it is no longer
horizontal). The trace condition for stability of the
internal equilibrium (7%, p*) is

dm* (1 —m*)+ (1 —oa) p* (1 —p*) <0,
while the heteroclinic orbit is attracting when
o?(c—d)/(c+d) < 1.

The two bifurcations now occur for different parameter
values and the internal equilibrium undergoes a usual
sub- or supercritical Hopf bifurcation, as indicated on
the bifurcation diagram in figure 7.

Therefore, direct viral interaction can break the
degeneracy of the coevolution model (14), (15). This
may occur even if this effect is minor as suggested by
field workers (Dwyer & Elkinton 1993). Phenomena
like multiple infections of an individual may have a
similar effect, and we conclude that the outcome of the
coevolution will depend on such subtle aspects of the
interaction. Thus, the occurrence of sustained
coevolutionary cycles in models of phage-bacterium
systems (Levin et al. 1977) probably is due to
phenomena that are not usually present in models of
viral diseases.

Density dependent effects on the dynamic param-
eters in the classical model (2) may cause frequency
dependent selection through density feedback between
the populations of host and parasite. This may produce
stable limit cycles in the genetic composition of the
populations when the genotypic effects are large
(Selgrade & Namkoong 1985). This possibility of cyclic
dynamics, however, vanishes as the genetic effects go to
zero, and in this sense the oscillations are due entirely
to the density dependence. On the other hand, the
possibility of oscillatory behaviour in the model (23)
reflects a qualitatively different nature of the model, in
that the possibility exists independently of the mag-
nitude of the genetic variation.
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5. GONGCLUSIONS

Genetic variation with a small influence on the
dynamic parameters of the interaction between a
diploid host and a haploid pathogen leads to slow
coevolution of the two species well described by a weak
selection approximation. This process can end in
various states. Selection may cause the pathogen or
both the host and the pathogen to lose variation and
end up monomorphic. Variants of a virus can only
coexist when variation is present in the host. Selection
may maintain stable polymorphism in both the host
and the pathogen, but only if the host shows
overdominance in fitness at the stable equilibrium.
Finally, selection may cause the host-pathogen system
to cycle in a heteroclinic orbit where one of the species
is nearly monomorphic while the other goes through a
transient polymorphism. This cycling state may be
maintained by a steady flow of rare mutations in both
host and pathogen.

Small changes in the dynamic parameters may
change the end state from stable polymorphism in both
species to a heteroclinic orbit when the dynamics are
based on an SIR model. In this sense we conclude that
the evolutionary interaction between a diploid host
and a haploid pathogen is degenerate in SIR models.
The abrupt change in dynamics eases as the genetic
influence on the dynamic parameters becomes larger,
but the range of parameters where limit cycles may
exist is still very limited. We do not expect stable limit
cycles in the genetic composition of the populations to
be a prominent feature of the model unless the genetic
variation has a significant impact on the dynamics.

The classical way of maintaining a two-allele
polymorphism by selection is overdominance in sur-
vival. Selection in the host occurs through differential
viability of the host genotypes, and the general result is
that stable polymorphism occurs only when over-
dominance in fitness prevails at equilibrium. Thus,
variation in the host is maintained when the het-
erozygote shows more resistance against the disease
than either of the two homozygotes. Situations where a
stable genetic limit cycle maintains variation by
frequency dependent selection without an obvious
heterozygote advantage are virtually absent or ex-
tremely rare in models based on SIR descriptions.
Further, the possibility of polymorphism without an
obvious heterozygote advantage opens the symmetric
possibility of rendering a stable polymorphic equi-
librium unattainable, in that the existence of a stable
genetic limit cycle corresponds to a supercritical Hopf
bifurcation and an unattainable equilibrium corre-
sponds to a subcritical bifurcation.

Density dependence begins to play a rdle in the
genetic dynamics as the differences between genotypes
become larger. Therefore, density feedback mech-
anisms may become important and the possibility for
oscillatory behaviour of the host—parasite system
widens. The criticality of the weak selection model,
however, asks for a sufficiently detailed specification of
the properties of the finite effects model to allow a
discussion of the reasons for the particular nature of the
oscillations. No a priori bias is expected towards a
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supercritical or a subcritical Hopf bifurcation. There-
fore, stable or unstable genetic limit cycles are both
genuine possibilities, and small changes in the model
assumptions may well change the behaviour of the
model.

Variants of a virus cannot coexist unless the host
varies, and the virus contributes to the maintenance of
host polymorphism only in special circumstances, as we
have just seen. Therefore, variation is not expected to
build up in the virus, and coexisting endemic viruses
have to be sufficiently different to overcome this
version of the competitive exclusion principle.

A crucial assumption of the SIR models is that the
virus only has an existence of its own within the host or
during the immediate transmission from one host to
another. If this assumption is relaxed, then the
degeneracy may be broken and non-trivial two-species
polymorphism result. We analysed the condition for
non-degenerate behaviour in a simple symmetric
model, and there a rather pronounced level of
qualitative interaction is required to produce a stable
genetic limit cycle for weak selection. However, this
will have to be analysed in models of a wider scope
before a general description is reached.

Competing equilibria occur in many situations in
the SIR-based model. Stable two-species polymorphic
equilibria may coexist with monomorphic equilibria,
one-species polymorphic equilibria may compete with
monomorphic equilibria with the other virus, and
monomorphic equilibria may be stable simultaneously.
Of particular interest are competing equilibria where
different virus types and different host alleles are
represented, because the existence of these equilibria
allows two-species polymorphism in a collection of
semi-isolated local populations, a metapopulation. For
instance, if two monomorphic equilibria which differ in
both host and pathogen are stable simultaneously, then
every isolated population will end up monomorphic.
For other reasons, perhaps historical, the populations
may have fixed at different monomorphic equilibria,
and so the metapopulation rests at a stable two-species
polymorphic equilibrium. Such equilibria, slightly
modified, still exist for a low amount of genetic
migration between the local populations, and with
migration even the local population will be at a stable
two-species polymorphic equilibrium.

The maintenance by metapopulation effects of
variation in virulence and resistance is interesting in its
own right, and for the study of this phenomenon SIR
models are good and simple tools. SIR models,
however, are problematic for the study of host—parasite
coevolution in more panmictic models.

APPENDIX A. MULTIPLE TIME SCALES

In this appendix we sketch how the motion along the
quasi steady state

w(ﬁ) ﬂ) = (S: [’ ”:pmﬁpv: F:S‘: Fs F)
= (S*’ I*’ ﬂ’p’p’p’ 0’ O’ 0)’
can be determined. Our first step will be to show that

w(p,m) is a stable steady state when € = 0.

Phil. Trans. R. Soc. Lond. B (1995)

The system (6) is autonomous for ¢ = 0; so by our
assumptions S and [ settle to an endemic equilibrium
(S*,1*). The variable 7 is stationary from equation
(7), and the system (8) contains a one-dimensional
singularity pg = p = p = p. This manifold is attracting,
ie. (pg pyp) = (p,p,p) for = 00, To see this, study the
variables £ = ps—p and &, = p,—p, and observe that

dg, _ (bnl Cb(l=m 1
E— (S +/7)S>£1 S g2>

dé,  bnl (b(l
@S hT

-_S'l)—1 + /)’S) £,

Obviously this system has a unique fixed point at
(£1,6,) = (0,0). Since the trace is negative and the
determinant is positive, and both are bounded away
from zero for sufficiently large ¢, we have §,(¢), £,(¢) >0
for t— o0 (Coddington & Levinson 1955, p. 315).

Once (8) has reached pg=p =p, the deviations
from Hardy—Weinberg proportions F, go to zero when
po #0,1. At p,=0,1 the right side of (9) is dis-
continuous and we need additional arguments.
Andreasen & Christiansen (1993) show for a similar
model that, if p # 0, 1, F,,— 0 as {— o0 on the fast time
scale so that F, = 0 is also stable in situations where ¢
or 4 are fixed. We shall not pursue this question
further, but simply conclude that (6)—(9) contain a
two-dimensional stable manifold @ of fixed points
parameterized by (m,p). Therefore for € > 0 a short
transience will bring the system close to the attracting
manifold .

The dynamics of 7 on @ can be determined directly
from (7) by evaluation of ¥, at @(p,7) and we obtain

%_ﬂfl_ arl _ ﬂ_ Uit
At dil ﬂdtl—e(l T
ORI
= ((1 m) s omt] (28)

Since 5&, is to be evaluated at @, we obtain
Uy = AL ST py+AT BST| pt—{p; [+ 9, 1| p} where {£,]
by =k p*+ky2pg+ k5 ¢°. Simple algebra now gives

it = em(1—7) (S{fi— B, p} + BSIF,— 7, py— P, — | p}).-

The dynamics of p on @ can be determined by noting
that according to (8) the variable

_ bl . b(1—m) I,
1= PSps+g gt
follows the equation

dy bml , b(l—m)I »
D~ e( 5ot g, + ST,

Since on w we have 5 = (BS+b1/S) p, this observation
may be used to determine the value of f = 9/ (S +51/5)
on w. Evaluation of the ¥s on @ now yields (10), (11).

The choice of 4 may be seen as a special case of the
projection method of Beck et al. (1984); for further
details of this we refer to Andreasen & Christiansen
(1993).
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APPENDIX B. MODEL WITH FREE LIVING
STAGES

A coevolutionary version of the Anderson & May
(1981) model with free-living stages (23) is obtained as
in section 2:

ds, 315 W 3
o = B luten) Si— [p+efl S W—[f+ep1 S, W.
i=l>2’3’
dI 511
= [B+efIS W —[pt+en) = [v+ei) ],
Z= 1,2935
dI
= [f+eB) S W—[u+ep) —[v+er] 1,
1=1,2,3,
%:Z[A-I—eij]jj—z[ﬂ"“eﬁ;j]sfw
j J
~S[A+ep LW =S p+ el W= (o+et) W,
j J
%ZK:E[/\—{-G/\V].]I;—E[/?)'*‘G/’Z]SJ'W
; j

—Z[pteful LW=2[f+efy] ;W —(o+ed) W.
J J

The detailed description of the interaction between

larvae and free virus is discussed in section 4.

Transforming this 11-dimensional system into total

abundance, gene frequency and deviation from

Hardy—-Weinberg as in section 2, we obtain

S‘C!l_f = bN—pS—BSW + ey,

d_l— BSW—(v+p) I+ey,,

dd_VtV= M—oW—B(S+1) W+eyry,

% = ﬁ—S[—VK(ﬂW—m) + e

dg_tw = /I\/—;(ﬂ,—ﬂw) + eV,

B i+ S i) F et

dd—/i’ = ﬂSTVV (bs—Pr) + ey

dd_[i, = 'B—SI*VK(PS —f1) +61/;M’

9 _ X <<Pps ;’5) (1—F) —p’; f{st)Hz/rm,

%1? =/f_SiM_/(< p,qfl) (1—F) Zigf (F—F, )+ezfrm,
A e A
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where 77; and 7, denote the frequency of virus type v
in the infected class and in the free-living stage,
respectively.

The model contains a stable two-dimensional singu-
larity,

(77 p) - {(S 1 W T, ﬂw’/’s’PbPI» St
- (S*:I*’W*’ﬂ’ﬂ:p:pub:o’o)o)lo <
The variables 7, and 7,, where

A pSW
1771 W I+ 1 W’

)
,0<p< 1}

LSW wbl . (1—m)bl,
Ny = T/’s+—s'lb1 'T'Pb

are slow variables so that

B2,
(B O

i
BSW bl
(1+S'

The coefficients ¥ need only be evaluated on the slow
manifold, and we find

Yo = (L=m) ;=) SW/I= (9, —V,) | p}
Yow = (1 )77{(/\ —A) /W (ﬂi ﬂi)
ﬂvz ﬁvz) ml— (ﬂw ﬁVz) m) I\ p}

o —=ma-y)
1/’ps —p(l—p )A</ui+ﬂi W7T+ﬂi W(l—m)|p>
1/’1;1"/7 l‘“ )</3¢WS/I — il 0>
1/’171 <ﬂz wSs/1— Vz il -

The weak selectlon model (24), (25) now follows.
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